SCHOOL DISTRICT OF MANAWA CURRICULUM COMMITTEE MEETING AGENDA

Join with Google Meet
meet.google.com/vqv-oiyv-gwk
Join by phone
(US) +1 337-520-0135 PIN: 513198 236\#

Date: May 5, 2021
Time: 6:00 p.m.
Hybrid Meeting Format (In-person Meeting for Board of Education at MES Board Room, 800 Beech Street \& Virtual Components)

Board Committee Members: Hollman (C), Jepson, J. Johnson
In Attendance:

Timer:
Recorder:

1. Consider Endorsement of Secondary Math Curriculum as Presented (Information / Action)
a. Seventh Grade Math
b. Eighth Grade Math
c. AP Calculus AB
d. Precalculus \& Trigonometry
2. Consider Endorsement of Recommendation to Change from the Adopted Lucy Calkins's Phonics Units of Study for Grades 4K-2 to Really Great Reading as Presented (Information / Action)
3. Consider Endorsement of Pre-ACT (SY2021-22) and Mosaic Adaptive Academic Learning (SY2022 and beyond) to Replace the ACT Periodic as the Grades 9 \& 10 Universal Screener as Presented (Information / Action)
4. Receive Presentation on 2021 ACT Results (Information)
5. Future Academic Goals Planning (Information)
6. Curriculum Committee Planning Guide (Information / Action)
7. Next Meeting Date: \qquad
8. Next Meeting Items:
a. Begin Annual Handbook Review (spread across June, July, \& August)
b. Consider Endorsement of the International Society for Technology in Education (ISTE) Scope \& Sequence as Presented (Information / Action)
c.
9. Adjourn

Unit Name: Rational Numbers	Length: 20 days
Standards: 7.NS.1A-D, 7.NS.2A-D, 7.NS. 3	Outcomes: Add, subtract, multiply and divide rational numbers. Apply properties of operations as strategies to perform operations with rational numbers. Convert a rational number to a decimal using division.
Essential Questions: How can you use a number line to order rational numbers? How can you use what you know about adding integers to add rational numbers? How can you use what you know about subtracting integers to subtract rational numbers? Why is the product of two negative rational numbers positive?	Learning Targets: Understand that a rational number is an integer divided by an integer. Convert rational numbers to decimals. Add rational numbers. Apply real-life situations. Subtract rational numbers. Multiply and divide rational numbers.
Topic 1: Rational Numbers	Length: 5 days
Standard(s): 7.NS.2B, 7.NS.2D	Academic Vocabulary: rational number, terminating decimal, repeating decimal
Lesson Frame:	We will: Review converting fractions to decimals using division.
	I will: Write rational numbers as decimals.
Lesson Frame:	We will: Review place value and simplifying fractions.
	I will: Write decimals as fractions.
Lesson Frame:	We will: Explore using a number line to show number order.
	I will: Order rational numbers on a number line.
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Adding Rational Numbers	Length: 5 days
Standard(s): 7.NS.1A, 7.NS.1B, 7.NS.1D, 7.NS. 3	Academic Vocabulary: n / a
Lesson Frame:	We will: Review the sign rules for addition of integers.
	I will: Add rational numbers.
Lesson Frame:	We will: Review substitution, order of operations, and simplifying fractions.
	I will: Evaluate expression with rational numbers.
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 3: Subtracting Rational Numbers	Length: 5 days
Standard(s): 7.NS.1C, 7.NS.1D, 7.NS. 3	Academic Vocabulary: n/a
Lesson Frame:	We will: Review the sign rules for subtraction of integers.
	I will: Subtract rational numbers.
Lesson Frame:	We will: Investigate using a number line to find distance.
	I will: Find the distance between two numbers on a number line, and apply to real-life situations.
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test quiz, test	Notes:
Topic 4: Multiplying and Dividing Rational Numbers	Length: 5 days
Standard(s): 7.NS.2A, 7.NS.2B, 7.NS.2C, 7.NS. 3	Academic Vocabulary: n/a
Lesson Frame:	We will: Review the sign rules for multiplication and division of integers.
	I will: Divide rational numbers and Multiply rational numbers.
Lesson Frame:	We will: Review properties of multiplication.
	I will: Multiply more than two rational numbers, and apply to real-life situations.
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Course Name:	8th Grade Math		
Credits:	1		
Prerequisites:	n/a		
Description:	The idea behind the 8th grade Math class is to revisit previously introduced topics and build on the students' understanding by adding new skills and look for deeper comprehension of the concept. Topics in this course include: The Number System, Expressions and Equations, Functions, Geometry, and Statistics and Probability.		
Academic Standards:	Wisconsin State Standards in Mathematics (2011)		
Units:	Unit Length:	Unit Standards:	Unit Outcomes:
Equations	15 days	8.EE.7A-B	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Show that a linear equations in one variable has one solution, infinitely many solutions, or no solution by transforming the equation into simpler forms.
Transformations	26 days	$\begin{aligned} & \text { 8.G.1A-C, 8.G.2, 8.G.3, } \\ & \text { 8.G. } 4 \end{aligned}$	Verify the properties of translations, reflections, and rotations. Describe translations, reflections, and rotations using coordinates. Identify dilations. Understand that figures are congruent (or similar) when they can be related by a sequence of translations, reflections, and rotations (and dilatations). Describe a sequence that exhibits congruence or similarity between two figures.
Angles and Triangles	20 days	8.G. 5	Classify and determine the measure of angles created when parallel lines are cut by a transversal. Demonstrate that the sum of the interior angle measures of a triangle is 180 degrees and apply this fact to find the unknown measures of angles and the sum of the angles of polygons. Use similar triangles to solve problems that include height and distance.
Graphing and Writing Linear Equations	24 days	8.EE.5, 8.EE.6, 8.F. 4	Use similar triangles to explain why the slope is the same between any two points on a line. Graph proportional relationships, interpreting the unit rate as the slope. Compare proportional relationships represented in different ways. Derive $y=m x$ and $y=m x+b$.
Systems of Linear Equations	20 days	8.EE.7A-B, 8.EE.8A-C	Show that a linear equation in one variable has one solution, infinitely many solutions, or no solution by transforming the equation into simpler forms. Solve multi-step equations. Understanding that the solution of a system of two linear equations in two variables corresponds to the point of intersection of their graphs. Solve systems of two linear equations in two variables graphically and algebraically.
Functions	18 days	8.F,1, 8.F.2, 8.F.3, 8.F. 4	Understand the definition of a function. Compare and write functions represented in different ways (words, tables, graphs). Understand that $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is a linear function and recognize nonlinear functions.
Real Numbers and the Pythagorean Theorem	21 days	$\begin{aligned} & \text { 8.NS.1, 8.NS.2, 8.EE.2, } \\ & \text { 8.G.6, 8.G.7, 8.G. } 8 \end{aligned}$	Understand that every rational number has a decimal expansion that terminates or repeats. Understand that numbers that are not rational are irrational. Compare irrational numbers using rational approximations. Evaluate square roots and cube roots, including those resulting from solving equations. Use the Pythagorean Theorem to find missing measures of right triangles and distances between points in the coordinate plane.
Data Analysis and Displays	7 days	8.SP.1, 8.SP.2, 8.SP. 3	Construct and interpret scatter plots. Find and assess lines of fit for scatter plots.
Exponents	15 days	8.EE. 1	Use the properties of integer exponents to generate equivalent expressions.

Unit Name: Exponents	Length: 15 days
Standards: 8.EE. 1	Outcomes: Use the properties of integer exponents to generate equivalent expressions.
Essential Questions: How can you use exponents to write numbers? How can you use inductive reasoning to observe patterns and write general rules involving properties of exponents? How can you divide two powers that have the same base? How can you evaluate a nonzero number with an exponent of zero? How can you evaluate a nonzero number with a negative integer exponent?	Learning Targets: Write expressions using integer exponents. Evaluate expressions involving integer exponents. Multiply powers with the same base. Find a power of a power. Find a power of a product. Divide powers with the same base. Simplify expressions involving the quotient of powers. Evaluate expressions involving numbers with zero as an exponent. Evaluate expressions involving negative integer exponents.
Topic 1: Exponents	Length: 3 days
Standard(s): 8.EE. 1	Academic Vocabulary: power, base, exponent
Lesson Frame:	We will: define exponents and display visual meaning
	I will: write expressions using exponents
Lesson Frame:	We will: discuss positive and negative expressions with exponents
	I will: evaluate expressions
Lesson Frame:	We will: review order of operations
	I will: use order of operations to evaluate expressions involving exponents
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Product of Powers Property	Length: 4 days
Standard(s): 8.EE. 1	Academic Vocabulary: product of powers property, power of a power property, power of a product property
Lesson Frame:	We will: explore the product of powers property
	I will: multiply powers with the same base
Lesson Frame:	We will: explore power of a power property
	I will: find a power of a power
Lesson Frame:	We will: explore power of a product property
	I will: find a power of a product
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 3: Quotient of Powers Property	Length: 4 days
Standard(s): 8.EE. 1	Academic Vocabulary: quotient of powers property
Lesson Frame:	We will: explore quotient of powers property

Unit Name: Exponents	Length: 15 days
Standards: 8.EE.1	Outcomes: Use the properties of integer exponents to generate equivalent expressions.
Essential Questions: How can you use exponents to write numbers? How can you use inductive reasoning to observe patterns and write general rules involving properties of exponents? How can you divide two powers that have the same base? How can you evaluate a nonzero number with an exponent of zero? How can you evaluate a nonzero number with a negative integer exponent?	Learning Targets: Write expressions using integer exponents. Evaluate expressions involving integer exponents. Multiply powers with the same base. Find a power of a power. Find a power of a product. Divide powers with the same base. Simplify expressions involving the quotient of powers. Evaluate expressions involving numbers with zero as an exponent. Evaluate expressions involving negative integer exponents.
Lesson Frame:	I will: divide powers with the same base
	We will: review order of operations and simplifying expressions with exponents
	I will: simplify an expression
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 4: Zero and Negative Exponents	Academic Vocabulary: n/a
Standard(s): 8.EE.1	We will: explore the use of zero and negative exponents
Lesson Frame:	I will: evaluate expressions using power properties and zero or negative exponents
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Unit Name: Real Numbers and the Pythagorean Theorem	Length: 21 days
Standards: 8.NS.1, 8.NS.2, 8.EE.2, 8.G.6, 8.G.7, 8.G.8	Outcomes: Understand that every rational number has a decimal expansion that terminates or repeats. Understand that numbers that are not rational are irrational. Compare irrational numbers using rational approximations. Evaluate square roots and cube roots, including those resulting from solving equations. Use the Pythagorean Theorem to find missing measures of right triangles and distances between points in the coordinate plane.
Essential Questions: How can you find the dimensions of a square or circle when you are given its area? How is the cube root of a number different from the square root of a number? How are the lengths of the sides of a right triangle related? How can you find decimal approximations of square roots that are not rational?	Learning Targets: Find square roots of perfect squares. Evaluate expressions involving square roots. Use square roots to solve equations. Find cube roots of perfect cubes. Evaluate expressions involving cube roots. Use cube roots to solve equations. Provide geometric proof of the Pythagorean Theorem. Use the Pythagorean Theorem to find missing sides lengths of right triangles. Define irrational numbers. Approximate square roots.
Topic 1: Finding Square Roots	Length: 5 days
Standard(s): 8.EE. 2	Academic Vocabulary: square root, perfect square, radical sign, radicand
Lesson Frame:	We will: discuss what square roots and perfect squares are
	I will: find the square roots of a perfect square
Lesson Frame:	We will: examine non-perfect squares
	I will: find square roots
Lesson Frame:	We will: practice and review simplifying expressions
	I will: evaluate expressions involving square roots
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Finding Cube Roots	Length: 5 days
Standard(s): 8.EE. 2	Academic Vocabulary: cube root, perfect cube
Lesson Frame:	We will: discuss what cube roots are
	I will: find cube roots
Lesson Frame:	We will: practice and review simplifying expressions
	I will: evaluate expressions involving cube roots
Lesson Frame:	We will: review evaluating expressions with given values
	I will: evaluate an algebraic expression
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 3: The Pythagorean Theorem	Length: 5 days
Standard(s): 8.EE.2, 8.G.6, 8.G.7, 8.G.8	Academic Vocabulary: theorem, legs, hypotenuse, Pythagorean Theorem
Lesson Frame:	We will: explore right triangles
	I will: find the length of a hypotenuse
Lesson Frame:	We will: practice using the Pythagorean Theorem
	I will: find the length of a leg
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 4: Approximating Square Roots	Length: 6 days
Standard(s): 8.NS.1, 8.NS.2, 8.EE. 2	Academic Vocabulary: irrational number, real number
Lesson Frame:	We will: explore the set of real numbers
	I will: classify real numbers
Lesson Frame:	We will: investigate square root values
	I will: approximate a square root
Lesson Frame:	We will: discuss and review number values on a number line
	I will: compare real numbers
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Unit Name: Data Analysis and Displays	Length: 7 days
Standards: 8.SP.1, 8.SP.2, 8.SP.3	Outcomes: Construct and interpret scatter plots. Find and assess lines of fit for scatter plots.
Essential Questions: How can you construct and interpret a scatter plot?	Learning Targets: Construct and interpret scatter plots. Describe patterns in scatter plots.
Topic 1: Scatter Plots	Length: 4 days
Standard(s): 8.SP.1	Academic Vocabulary: scatter plot, outliers, clusters
Lesson Frame:	We will: explore what scatter plots are and what they show
Lesson Frame:	I will: interpret a scatter plot
	We will: investigate date on a scatter plot
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Lines of Fit	Length: 3 days relationships
Standard(s): 8.SP.1, 8.SP.2, 8.SP.3	Academic Vocabulary: line of fit, line of best fit
Lesson Frame:	We will: revisit concepts of slope, y-intercepts, and linear equations
	I will: find a line of fit
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Course Name:	A.P. Calculus AB		
Credits:	1		
Prerequisites:	Pre-Calculus \& Trigonometry (Recommended grade of B or better or by teacher approval)		
Description:	Equivalent to a first semester college calculus course. The basis of study includes limits and continuity, derivatives, integrals, and the applications. A TI-83 or TI-84 calculator is required. A TI-89 is not allowed.		
Academic Standards:	College Board Mathematical Practices for AP Calculus AB		
Units:	Unit Length:	Unit Standards:	Unit Outcomes:
Limits and Continuity	16 days	CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Derivatives	35 days	Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A	Students will learn how to take the derivative of various functions in this unit. They will also learn notation and begin investigating some uses of the derivative in real world applications.
Applications of Derivatives	24 days	Fun 1-3E, Fun 4-1E, Fun 4-2E, Fun 4-3D, Fun 4-2D, Fun 4-2A, Fun 4-3F, Cha 3-1F, Fun 4-1E, Fun 4-3E, Cha 3-1E, Cha 3-3F	Students will apply their knowledge of derivatives in this unit to solve real worlds problems. They will learn how derivatives relate to the graphs of functions and how tests can be used to picture important features of graphs.
The Definite Integral	19 days	Cha 4-4B, Lim 5-1F, Lim 5-2C, Fun 5-2D, Fun 5-1D, Fun 5-3D, Fun 5-3D, Fun 6-4C, Fun 6-1C	Students wil explore and learn about the definite integral. They will learn notation and properties of integrals and how the fundamental theorem of calculus makes a connection between derivative calculus and integral calculus.
Differential Equations and Mathematical Modeling	10 days	Fun 7-2C, Fun 7-3G, Fun 7-4D, Fun 6-1E, Fun 7-1E, Fun 7-3G	Students will get an introduction to differential equations in this unit. They will learn how antiderivatives can be used with various strategies to solve differential equations problems.
Applications of Definite Integrals	20 days	Cha 4-4B, Cha 4-3D, Cha 5-4C, Cha 5-1E, Cha 5-2B, Cha 5-3D, Cha 5-2D, Cha 5-4E, Cha 6-3D	Students will explore various applications of the definite integral in this unit. They will solve real world problems with rates of change and learn how the integral can be used to calculate geometric values such as area and volume.

Unit Name: Limits and Continuity	Length: 16 days
Standards: CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Outcomes: Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Essential Questions: How do limits describe the behavior of a function? What are the strategies used to determine the limit of a function? What determines continuity and how can you find and describe discontinuities?	Learning Targets: Students will be able to: -Calculate average and intantaneous rates of change. -Calculate limits as x approaches positive or negative infinity. -Identify intervals on which a function is continuous. -Find the equation of a tangent and a normal line to a curve.
Topic 1: Rates of Change and Limits	Length: 4 days
Standard(s): CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C	Academic Vocabulary: Average Speed, Instantaneous Speed, Limit, One-Sided Limit, Two-Sided Limit, Sandwich Theorem
Lesson Frame:	We will explore the definition of a limit and how it can be used to find rates of change.
	I will calculate average and intantaneous rates of change.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Limits Involving Infinity	Length: 3 days
Standard(s): Lim 1-2B, Lim 1-1E, Lim 2-3D, Lim 2-2D	Academic Vocabulary: Infinite Limits, End Behavior Model
Lesson Frame:	We will investigate what happens at the end of a function.
	I will calculate limits as x approaches positive or negative infinity.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Continuity	Length: 3 days
Standard(s): Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E	Academic Vocabulary: Continuity, Continuous Function, Intermediate Value Theorem
Lesson Frame:	We will define continuity and the properties of continuous functions.
	I will identify intervals on which a function is continuous.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 4: Rates of Change and Tangent Lines	Length: 4 days
Standard(s): Cha 2-2B	Academic Vocabulary: Average Rate of Change, Tangent, Normal Line
Lesson Frame:	We will define a tangent line and discuss its relation to slope.
	I will find the equation of a tangent and a normal line to a curve.

Unit Name: Limits and Continuity	Length: 16 days
Standards: CHA 1-2B, Lim 1-2B, Lim 1-1E, Lim 1-1C, Lim 1-3C, Lim 1-2C, Lim 2-3D, Lim 2-2D, Lim 2-3B, Lim 2-3C, Lim 2-1E, Fun 1-3E, Cha 2-2B	Outcomes: Students will learn the concept of the limit in this unit. They will learn how to evaluate, notate and apply limits to real world applications. This unit will also explore rates of change and how to connect the limit to the following concept of the derivative.
Essential Questions: How do limits describe the behavior of a function? What are the strategies used to determine the limit of a function? What determines continuity and how can you find and describe discontinuities?	Learning Targets: Students will be able to: -Calculate average and intantaneous rates of change. -Calculate limits as x approaches positive or negative infinity. -ldentify intervals on which a function is continuous. -Find the equation of a tangent and a normal line to a curve.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Derivatives

Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?

Length: 35 days

Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn
notation and begin investigating some uses of the derivative in real world applications.
Learning Targets: Students will be able to:

- Calculate the slope of a function using the definition of a derivative

Tell where a function is not differentiable

- Use the rules of differentiation to calculate a derivative.
- Use derivatives to analyze straight line motion.

Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions.

- Differentiate a composite function

Find the derivative of an implicitly defined function

- Calculate the derivative of an inverse trigonometric function.
- Calculate the derivative of an exponential and a logarithmic function.

Length: 3 days
Academic Vocabulary: Derivative, Derivative Notation

We will define a derivative and practice writing notations for derivatives.
I will calculate the slope of a function using the definition of a derivative.
Notes:

Application Examples

Topic 2: Differentiability	Length: 2 days
Standard(s): Fun 2-3E	Academic Vocabulary: Differentiable, Intermediate Value Theorem for Derivatives
Lesson Frame:	We will explore where functions fail to have derivatives.
	I will tell where a function is not differentiable.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Topic 3: Rules for Differentiation
Standard(s): Fun 3-1E
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems Application Examples

Topic 4: Velocity and Other Rates of Change

Standard(s): Cha 3-1E, Cha 3-2A

Lesson Frame

Length: 4 days
Academic Vocabulary: Power Rule, Product Rule, Quotient Rule, Second Derivative
We will define the basic shortcut rules for taking derivatives.
I will use the rules of differentiation to calculate a derivative.
Notes:

Length: 4 days
Academic Vocabulary: Instantaneous Rate of Change, Velocity, Speed, Acceleration
We will explore how derivatives tie into real worl applications of velocity and acceleration
I will use derivatives to analyze straight line motion.

Unit Name: Derivatives
Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A

Length: 35 days
Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn
notation and begin investigating some uses of the derivative in real world applications.
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?

Learning Targets: Students will be able to:

- Calculate the slope of a function using the definition of a derivative.

Tell where a function is not differentiable

- Use the rules of differentiation to calculate a derivative.
- Use derivatives to analyze straight line motion.

Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions.

- Differentiate a composite function
-Find the derivative of an implicitly defined function
- Calculate the derivative of an inverse trigonometric function.
- Calculate the derivative of an exponential and a logarithmic function.

Notes:

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems

 Application ExamplesTopic 5: Derivatives of Trigonometric Functions
Standard(s): Fun 3-1D
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems
Application Examples

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems Application Examples

Topic 6: Chain Rule	Length: 3 days
Standard(s): Fun 3-1C	Academic Vocabulary: Chain Rule, Power Chain Rule
Lesson Frame:	We will investigate composite functions and how to use the chain rule to take the derivative.
	I will differentiate a composite function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 7: Implicit Differentiation	Length: 3 days
Standard(s): Fun 3-1E	Academic Vocabulary: Implicit Differentiation,
Lesson Frame:	We will investigate implicitly defined functions and learn to take derivatives of them.
	I will find the derivative of an implicitly defined function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 8: Derivatives of Inverse Trigonometric Functions	Length: 3 days
Standard(s): Fun 3-1E	Academic Vocabulary: Inverse Trigonometric Function

Unit Name: Derivatives	Length: 35 days
Standards: Cha 2-1D, Cha 2-4C, Cha 2-1E, Fun 2-3E, Fun 3-1E, Cha 3-1E, Fun 3-1D, Fun 3-1C, Cha 3-2A	Outcomes: Students will learn how to take the derivative of various functions in this unit. They will also learn notation and begin investigating some uses of the derivative in real world applications.
Essential Questions: How do you find the slope of a curve at an instantaneous point? How can you find the derivative of a function using the limit process? What rules allow you to find the derivative of a function without using the entire limit process?	Learning Targets: Students will be able to: - Calculate the slope of a function using the definition of a derivative. - Tell where a function is not differentiable. - Use the rules of differentiation to calculate a derivative. - Use derivatives to analyze straight line motion. - Use the rules of differentiation to calculate derivatives for the six basic trigonometric functions. - Differentiate a composite function. -Find the derivative of an implicitly defined function. -Calculate the derivative of an inverse trigonometric function. -Calculate the derivative of an exponential and a logarithmic function.
Lesson Frame:	We will derive a formula for taking the derivative of inverse trigonometric functions.
	I will calculate the derivative of an inverse trigonometric function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 9: Derivatives of Exponential and Logarithmic Functions	Length: 4 days
Standard(s): Fun 3-1E	Academic Vocabulary: Exponential Function, Logarithmic Function
Lesson Frame:	We will explore how derivatives can be used on logarithmic and exponential functions.
	I will calculate the derivative of an exponential and a logarithmic function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Differential Equations and Mathematical Modeling	Length: 10 days
Standards: Fun 7-2C, Fun 7-3G, Fun 7-4D, Fun 6-1E, Fun 7-1E, Fun 7-3G	Outcomes: Students will get an introduction to differential equations in this unit. They will learn how antiderivatives can be used with various strategies to solve differential equations problems.
Essential Questions: How can antiderivatives be used to solve equations with derivatives in them? What techniques can be uesd to solve initial value problems?	Learning Targets: Students will be able to: -Solve an initial value problem using antiderivatives. -Compute an indefinite integral using u-substitution methods. -Use separation of variables to solve a differential equation.
Topic 1: Slope Fields and Differential Equations	Length: 3 days
Standard(s): Fun 7-2C, Fun 7-3G, Fun 7-4D	Academic Vocabulary: Differential Equations, Slope Fields
Lesson Frame:	We will define a differential equation and explore strategies to solve them.
	I will solve an initial value problem using antiderivatives.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Antidifferentiation by Substititution	Length: 3 days
Standard(s): Fun 6-1E	Academic Vocabulary: Indefinite Integrals, U-Substitution
Lesson Frame:	We will create a method for finding the antiderivative of a function that needs to use substitution.
	I will compute an indefinite integral using u-substitution methods.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Separable Differential Equations	Length: 2 days
Standard(s): Fun 7-1E, Fun 7-3G	Academic Vocabulary: Separable Differential Equation, Law of Exponential Change
Lesson Frame:	We will explore differential equations with both x and y on the same size and formalize a way to solve them.
	I will use separation of variables to solve a differential equation.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Applications of Definite Integrals

Standards: Cha 4-4B, Cha 4-3D, Cha 5-4C, Cha 5-1E, Cha 5-2B, Cha 5-3D, Cha 5-2D, Cha 5-4E, Cha 6-3D

Essential Questions: How can you use integrals to solve real world problems involving rates of change? How can you find the area between two curves in the plane? How can integrals be used to find volumes of solid objects?

Topic 1: Integral as Net Change
 Standard(s): Cha 4-4B, Cha 4-3D

Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems,
Application Examples

Topic 2: Areas in the Plane	Length: 4 days
Standard(s): Cha 5-4C, Cha 5-1E, Cha 5-2B	Academic Vocabulary: Area Between Curves
Lesson Frame:	We will formalize techniques for finding the areas of shapes in the x-y plane.
	I will use integration to find the area between two curves.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Volumes of Solids	Length: 4 days
Standard(s): Cha 5-3D, Cha 5-2D, Cha 5-4E	Academic Vocabulary: Cross Section, Volume of Revolution, Disk Method, Shell Method
Lesson Frame:	We will explore how integrals can be used to find the volume of 3 dimensional objects.
	I will use integration to calculate volumes of solids.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
	Length: 3 days
Topic 4: Lengths of Curves	Academic Vocabulary: Sine Wave, Arc Length
Standard(s): Cha 6-3D	We will explore how integrals can be used to find the length of curves.
Lesson Frame:	I will use integration to calculate the length of a curve.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Course Name:	Pre-Calculus \& Trigonometry		
Credits:	1		
Prerequisites:	Advanced Algebra (Recommended grade of C or better or by teacher approval)		
Description:	Prepares students for college mathematics. The basic structure of this course is built around the study of functions, their properties, graphs and applications in society. Functions included in this course: linear, polynomial, rational, trigonometric, exponential and logarithmic. Also included in this course is the study of polar coordinates and complex numbers, sequences and series, and probability. The purchase of a graphing calculator is highly recommended for this course. A TI-83 or TI-84 calculator is required.		
Academic Standards:	Wisconsin State Standards in Mathematics (2011)		
Units:	Unit Length:	Unit Standards:	Unit Outcomes:
Functions and Graphs	26 days	HSFBFB3, HSF.IF.A.2, HSF.IF.A.1, HSF.IF.C.8. A,HSF.BF.B.3, HSA-CED.A.2, HSF-BF.A.1a, HSF-LE.A.1b, HSF-LE.A.2, HSF.IF.C.7.B, HSF. IF.C.7.B, HSF.BF.A.1.C, HSF.BF.B. 4	Students will use the information in this unit to be able to graph and analyze various types of functions. Students will learn how to describe key aspects of a function and rewrite equations of functions.
Polynomial and Rational Functions	24 days	HSA-SSE.A.2, HSA-SSE.B.3a, HSA.APR.D.6, HSA.APR. A.1, HSA.REI.B.4, HSA.APR.B.2, HSA.REI.A.2, HSF.IF.C. 7.D	Students will understand how to factor algebraic expressions and use factoring and division techniques to solve equations. Students will also learn how to simplify and solve expressions and equations with rational terms.
Exponential and Logarithmic Functions	24 days	8.EE.A.1, HSF.LE.A.3, 8.NS.A.1, HSN.RN.A.1, HSN.RN.B.3, HSF.BF.B.5, HSF.LE.A. 4	Students will utilize algebraic properties to rewrite exponential and logarithmic expressions. Students will extend their knowledge of logarithms and exponents to solve equations and real world problems.
Basic Triangle Trigonometry	16 days	HSF.TF.A.1, HSG.SRT.C.6, HSG.SRT.C.8, HSG.SRT.D. 11	Students will be able to solve right triangles using geometric principles and basic trigonometry. Students will also be able to solve problems involving triangles without right angles using the law of sines and the law of cosines.
Graphs of Trigonometric Functions	15 days	HSF.TF.A.2, HSF.TF.A.3, HSF.TF.B.5, HSF.TF. B. 7	Students will memorize the unit circle and use it to find values of trigonometric functions. Students will extend their knowledge of the unit circle to graph both sinusoidal curves as well as other trigonometric functions. Students will also understand how inverse trigonometric functions can be used in trigonometry.
Analytic Trigonometry	17 days	HSF.TF.C.8, HSF.TF.C.9, HSF.TF.B. 7	Students will use information learned in this unit about how the interrelationships among the six basic trigonometric functions make it possible to write trigonometric expressions in various equivalent forms.

Unit Name: Functions and Graphs	Length: 26 days
Standards: HSFBFB3, HSF.IF.A.2, HSF.IF.A.1, HSF.IF.C.8.A,HSF.BF.B.3, HSA-CED. A.2, HSF-BF.A.1a, HSF-LE.A.1b, HSF-LE.A.2, HSF.IF.C.7.B, HSF.IF.C.7.B, HSF.BF.A. 1.C, HSF.BF.B. 4	Outcomes: Students will use the information in this unit to be able to graph and analyze various types of functions. Students will learn how to describe key aspects of a function and rewrite equations of functions.
Essential Questions: How can you determine which family a function belongs to? How can you write the domain and range of a function? How can you draw the graph of a given function? How can you perform operations within a function	Learning Targets: Students will be able to: -Graph a function using transformations. -Use interval notation to write a set of real numbers. -Calculate the domain and range of a function both graphically and analytically. -Find and label extrema for a given function. -Determine whether a function is even, odd, or neither both graphically and analytically. -Write an equation in slope-intercept form given enough information. -Graph a piecewise function. -Graph a transformed version of the greatest integer function. -Write a single function defined as the composition of two functions. -Find the inverse of a function and prove that it is the inverse of the original function.
Topic 1: Parent Functions \& Transformations	Length: 3 days
Standard(s): HSFBFB3	Academic Vocabulary: Stretch, Shrink, Transformation, Translation, Reflection
Lesson Frame:	We will classify families of functions and identify transformations of parent functions.
	I will graph a function using transformations.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Interval Notation	Length: 2 days
Standard(s): HSF.IF.A. 2	Academic Vocabulary: Interval
Lesson Frame:	We will define interval notation.
	I will use interval notation to write a set of real numbers.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Domain and Range	Length: 3 days
Standard(s): HSF.IF.A. 1	Academic Vocabulary: Function, Domain, Range, Vertical Line Test
Lesson Frame:	We will review domain and range as well as how to determine if a graph represents a function.
	I will calculate the domain and range of a function both graphically and analytically.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 4: Extreme Values	Length: 2 days
Standard(s): HSF.IF.C.8.A	Academic Vocabulary: Extreme Value, Maximum, Minimum, Local/Relative, Absolute, Increasing, Decreasing
Lesson Frame:	We will define and classify various forms of extrema on a function.
	I will find and label extrema for a given function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Functions and Graphs
Standards: HSFBFB3, HSF.IF.A.2, HSF.IF.A.1, HSF.IF.C.8.A.HSF.BF.B.3, HSA-CED A.2, HSF-BF.A.1a, HSF-LE.A.1b, HSF-LE.A.2, HSF.IF.C.7.B, HSF.IF.C.7.B, HSF.BF.A. 1.C, HSF.BF.B. 4

Essential Questions: How can you determine which family a function belongs to? How can you write the domain and range of a function? How can you draw the graph of a given function? How can you perform operations within a function

Length: 26 days
Outcomes: Students will use the information in this unit to be able to graph and analyze various types of functions. Students will learn how to describe key aspects of a function and rewrite equations of functions
Learning Targets: Students will be able to
Graph a function using transformations
Use interval notation to write a set of real numbers.
Calculate the domain and range of a function both graphically and analytically.
Find and label extrema for a given function
Determine whether a function is even, odd, or neither both graphically and analytically.
Write an equation in slope-intercept form given enough information
Graph a piecewise function
-Graph a transformed version of the greatest integer function.
Write a single function defined as the composition of two functions.
Find the inverse of a function and prove that it is the inverse of the original function

Topic 5: Even and Odd Functions
Standard(s): HSF.BF.B.3
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Topic 6: Linear Functions	Length: 3 days
Standard(s): HSA-CED.A.2, HSF-BF.A.1a, HSF-LE.A.1b, HSF-LE.A. 2	Academic Vocabulary: Slope, Intercept, Slope-Intercept Form, Point-Slope Form, Parallel, Perpendicular
Lesson Frame:	We will review linear functions in slope-intercept form.
	I will write an equation in slope-intercept form given enough information.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Topic 7: Piecewise Functions
Standard(s): HSF.IF.C.7.B
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Length: 3 days
Academic Vocabulary: Piecewise Function

We will explore how to read and graph piecewise-defined functions.
will graph a piecewise function.

Notes:

Topic 8: Greatest Integer Function	Length: 2 days
Standard(s): HSF.IF.C.7.B	Academic Vocabulary: Integer, Greatest Integer Function, Step Function
Lesson Frame:	We will practice graphing step functions and define the greatest integer operation.
	I will graph a transformed version of the greatest integer function.

Unit Name: Functions and Graphs	Length: 26 days
Standards: HSFBFB3, HSF.IF.A.2, HSFF.IF.A.1, HSF.IF.C.8.A.HSF.BF.B.3, HSA-CED. A.2, HSF-BF.A.1a, HSF-LE.A.1b, HSF-LE.A.2, HSF.IF.C.7.B, HSF.IF.C.7.B, HSF.BF.A. 1.C, HSF.BF.B.4	Outcomes: Students will use the information in this unit to be able to graph and analyze various types of functions. Students will learn how to describe key aspects of a function and rewrite equations of functions.
Essential Questions: How can you determine which family a function belongs to? How can you write the domain and range of a function? How can you draw the graph of a given function? How can you perform operations within a function	Learning Targets: Students will be able to: -Graph a function using transformations. - -se interval notation to write a set of real numbers. --calculate the domain and range of a function both graphically and analytically. -Find and label extrema for a given function. -Determine whether a function is even, odd, or neither both graphically and analytically. -Write an equation in slope-intercept form given enough information. -Graph a piecewise function. -Graph a transformed version of the greatest integer function. -Write a single function defined as the composition of two functions. -Find the inverse of a function and prove that it is the inverse of the original function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 9: Composite Functions	
Standard(s): HSF.BF.A.1.C	Length: 2 days
Lesson Frame:	Academic Vocabulary: Function Composition
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
	We will explore operations that can be used between operations including function compostion.
Topic 10: Inverse Functions	Length: 2 days
Standard(s): HSF.BF.B.4	Academic Vocabulary: Inverse
Lesson Frame:	We will define the inverse of a function and investigate inverse operations.
	I will find the inverse of a function and prove that it is the inverse of the original function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples the composition of two functions.	Notes:

Unit Name: Polynomial and Rational Functions
Standards: HSA-SSE.A.2, HSA-SSE.B.3a, HSA.APR.D.6, HSA.APR.A.1, HSA. REI.B.4, HSA.APR.B.2, HSA.REI.A.2, HSF.IF.C.7.D

Essential Questions: How can you choose the best factoring technique for a given polynomial? How can you manipulate and analyze functions with rational expressions? How can you find the roots of any given polynomial equation?

Topic 1: Factoring Trinomials

Standard(s): HSA-SSE.A.2, HSA-SSE.B.3a	Aca
Lesson Frame:	

Topic 2: Advanced Factoring Methods	Length: 3 days
Standard(s): HSA-SSE.A. 2	Academic Vocabulary: Factor, Grouping, Difference/Sum of Cubes
Lesson Frame:	We will explore advanced factoring methods and use them to factor polynomials with a degree greater than 2.
	I will use grouping to factor a third degree polynomial.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Rational Expressions	Length: 3 days
Standard(s): HSA.APR.D. 6	Academic Vocabulary: Rational Expression, Excluded Values
Lesson Frame:	We will investigate rules for simplifying rational expressions.
	I will simplify a rational expression and state its excluded values
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 4: Synthetic and Long Division	Length: 2 days
Standard(s): HSA.APR.A. 1	Academic Vocabulary: Quotient, Remainder, Synthetic Division
Lesson Frame:	We will explore the processes used for dividing one polynomial by another.
	I will use synthetic division to find the quotient of two polynomials and inclued the remainder.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Length: 24 days

Outcomes: Students will understand how to factor algebraic expressions and use factoring and division techniques to solve equations. Students will also learn how to simplify and solve expressions and equations with rational terms.
Learning Targets: Students will be able to:
-Factor a trinomial with a leading coefficient that is not 1 into to binomials.
Use grouping to factor a third degree polynomial
-Simplify a rational expression and state its excluded values
Use synthetic division to find the quotient of two polynomials and inclued the remainder.
Pick the simplest method necessary and use it to solve a quadratic equation
-Find the rational zeros of a cubic polynomial.
-Solve a rational equation and check to make sure I don't have extraneous solutions
-Analytically find the asymptotes of a rational function and use them to draw a graph
Length: 2 days
Academic Vocabulary: Monomial, Trinomial, Factor, FOIL
We will review factoring trinomials by both removing common factors and using th FOIL pattern
will factor a trinomial with a leading coefficient that is not 1 into to binomials. Notes:

Length: 3 days

Academic Vocabulary: Factor, Grouping, Difference/Sum of Cubes

I will use grouping to factor a third degree polynomial
Notes:

Length: 3 days
Academic Vocabulary: Rational Expression, Excluded Values
We will investigate rules for simplifying rational expressions. Notes:

Length: 2 days
Academic Vocabulary: Quotient, Remainder, Synthetic Division

I will use synthetic division to find the quotient of two polynomials and inclued the remainder
Notes:

Unit Name: Polynomial and Rational Functions
Standards: HSA-SSE.A.2, HSA-SSE.B.3a, HSA.APR.D.6, HSA.APR.A.1, HSA REI.B.4, HSA.APR.B.2, HSA.REI.A.2, HSF.IF.C.7.D

Essential Questions: How can you choose the best factoring technique for a given polynomial? How can you manipulate and analyze functions with rational expressions? How can you find the roots of any given polynomial equation?

Topic 5: Solving Quadratic Equations

Standard(s): HSA.REI.B.4	Aca

Lesson Frame: Examples

Topic 6: Rational Root Theorem
Standard(s): HSA.APR B.2

Standard(s): HSA.APR.B. 2	Ac
Lesson Frame:	

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Topic 7: Solving Rational Equations
Standard(s): HSA.REI.A. 2
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Topic 8: Graphing Rational Functions
Standard(s): HSF.IF.C.7.D
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Length: 3 days

Academic Vocabulary: Asymptote, End Behavior, Discontinuity,
We will explore asymptotic behavior on rational functions.
I will analytically find the asymptotes of a rational function and use them to draw a graph.
Notes:

Unit Name: Exponential and Logarithmic Functions	Length: 24 days
Standards: 8.EE.A.1, HSF.LE.A.3, 8.NS.A.1, HSN.RN.A.1, HSN.RN.B.3, HSF.BF.B.5, HSF.LE.A. 4	Outcomes: Students will utilize algebraic properties to rewrite exponential and logarithmic expressions. Students will extend their knowledge of logarithms and exponents to solve equations and real world problems.
Essential Questions: How can you use an exponential groth or decay model to solve a real world problem? How can you rewrite exponential and logarithmic expressions using algebraic properties? How can you solve equations containing exponents and logarithms?	Learning Targets: Students will be able to: -Simplify expression using the rules of exponents. -Graph an exponential growth and an exponential decay model. -Simplify expressions that include the number e. -Rewrite expressions from radical form into exponent form and vice versa. -Rewrite expressions in logarithmic form into exponential form and vice versa. -Utilize the properties of logarithms to condense and expand logarithmic expressions. Evaluate logarithms using the change of base formula. -Use logarithms to solve exponential equations.
Standard(s): HSF.LE.A. 4	Academic Vocabulary: Exponential Equation
Lesson Frame:	We will explore strategies for solving exponential equations.
	I will use logarithms to solve exponential equations.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 9: Solving Logarthmic Equations	Length: 3 days
Standard(s) HSF. BF. B. 5	Academic Vocabulary: Logarithmic Equation
Lesson Frame:	We will explore strategies for solving logarithmic equations.
	I will use exponents to solve logarithmic equations.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Graphs of Trigonometric Functions

Standards: HSF.TF.A.2, HSF.TF.A.3, HSF.TF.B.5, HSF.TF.B. 7

Essential Questions: How can the unit circle be used to find exact
measurements of trigonometric functions? How can a sinusoidal curve be used to model a real world problem? How can inverse trigonometric functions be used find angles in triangles?

Topic 1: The Unit Circle	-F
Standardss: HSF.TF.A.2, HSF.TFA.3	Len

Standard(s): HSF.TF.A.2, HSF.TF.A. 3	
Lesson Frame:	

Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Topic 2: Sinusoidal Functions
Standard(s): HSF.TF.B.5
Lesson Frame:
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples

Length: 15 days

Outcomes: Students will memorize the unit circle and use it to find values of trigonometric functions. Students will extend their knowledge of the unit circle to graph both sinusoidal curves as well as other trigonometric functions Students will also understand how inverse trigonometric functions can be used in trigonometry.

Learning Targets: Students will be able to:

-Memorize the unit cirlcle and use it to find exact values of trigonometric functions
Graph a sinusoidal function with multiple transformations
Draw the graph of a tangent function.
-Find the value of an inverse trigonmetric expression using the unit circle
Length: 4 days
Academic Vocabulary: Cosecant, Cotangent, Secant
We will define all the values on the unit circle and practice memorizing them.
I will memorize the unit cirlcle and use it to find exact values of trigonometric functions.
Notes:

Length: 4 days
Academic Vocabulary: Sinusoidal Curve, Amplitude, Period, Phase Shift, Vertical Shift
We will investigate graphs of sine and cosine functions and how they can be transformed.
I will graph a sinusoidal function with multiple transformations.
Notes:

Topic 3: Graphs of Other Trigonometric Functions	Length: 2 days
Standard(s): HSF.TF.A. 3	Academic Vocabulary: Asymptotes
Lesson Frame:	We will explore graphs of tangent, cotangent, secant, and cosecant functions.
	I will draw the graph of a tangent function.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	We will:
Topic 4: Inverse Trigonometric Functions	Length: 3 days
Standard(s): HSF.TF.B. 7	Academic Vocabulary: Inverse Trigonometric Function, Arc(sin,cos,...)
Lesson Frame:	We will define inverse trigonometric functions and connect them to the standard trigonometric operations.
	I will find the value of an inverse trigonmetric expression using the unit circle.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Unit Name: Analytic Trigonometry	Length: 17 days
Standards: HSF.TF.C.8, HSF.TF.C.9, HSF.TF.B. 7	Outcomes: Students will use information learned in this unit about how the interrelationships among the six basic trigonometric functions make it possible to write trigonometric expressions in various equivalent forms.
Essential Questions: How are algebraic properties related to trigonometric functions? How can you rewrite a trigonometric expression into a more useful form? How can you use trigonometric identities to solve equations?	Learning Targets: Students will be able to: -Use basic trigonometric identities to simplify expressions. -Use the pythagorean identities in conjunction with previous knowledge to simplify expressions. -Use the sum and difference identities in conjunction with previous knowledge to simplify expressions. -Use knowledge of all trigonometric identities to simplify expressions with trigonometric functions. -Solve a trigonometric equation using an identity and inverse trigonometry.
Topic 1: Basic Trigonometric Identities	Length: 3 days
Standard(s): HSF.TF.C. 8	Academic Vocabulary: Reciprocal Identities, Cofunction Identities, Even/Odd Identities, Quotient Identities
Lesson Frame:	We will define four basic sets of trigonometric identies.
	I will use basic trigonometric identities to simplify expressions.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 2: Pythagorean Identities	Length: 2 days
Standard(s): HSF.TF.C. 8	Academic Vocabulary: Pythagorean Identities
Lesson Frame:	We will define and prove the pythagorean identities of trigonometry,
	I will use the pythagorean identities in conjunction with previous knowledge to simplify expressions.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 3: Sum and Difference Identities	Length: 3 days
Standard(s): HSF.TF.C. 9	Academic Vocabulary: Sum/Difference Identities
Lesson Frame:	We will define and prove the sum and difference identities of trigonometric functions.
	I will use the sum and difference identities in conjunction with previous knowledge to simplify expressions.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 4: Double, Half, and Power Reducing Identities	Length: 3 days
Standard(s): HSF.TF.C. 9	Academic Vocabulary: Double Angle Identity, Half Angle Identity, Power Reducing Identity
Lesson Frame:	We will define and prove the double angle, half angle, and power reducing identities of trigonometric functions.
	I will use my knowledge of all trigonometric identities to simplify expressions with trigonometric functions.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:
Topic 5: Trigonometric Equations	Length: 4 days

Unit Name: Analytic Trigonometry	Length: 17 days
Standards: HSF.TF.C.8, HSF.TF.C.9, HSF.TF.B.7	Outcomes: Students will use information learned in this unit about how the interrelationships among the six basic trigonometric functions make it possible to write trigonometric expressions in various equivalent forms.
Essential Questions: How are algebraic properties related to trigonometric functions? How can you rewrite a trigonometric expression into a more useful form? How can you use trigonometric identities to solve equations?	Learning Targets: Students will be able to: -Use basic trigonometric identities to simplify expressions. -Use the pythagorean identities in conjunction with previous knowledge to simplify expressions. -Use the sum and difference identities in conjunction with previous knowledge to simplify expressions. -Use knowledge of all trigonometric identities to simplify expressions with trigonometric functions. -Solve a trigonometric equation using an identity and inverse trigonometry.
Standard(s): HSF.TF.B.7	Academic Vocabulary: Trigonometric Equation, Inverse Operation
Lesson Frame:	We will explore techniques for solving trigonometric functions.
	I will solve a trigonometric equation using an identity and inverse trigonometry.
Performance Tasks: Warmup Problems, Exit Tickets, Challenge Problems, Application Examples	Notes:

Students choosing to excel; realizing their strengths

To: Board of Education
From: Jacquelyn Sernau- District Reading Specialist
Date: April 22, 2021
Re: Literacy Updates/Request for changing curriculum materials

The purpose of this memo is to recommend to the Board a change from the adopted Lucy Calkins's Phonics Units of Study for grades 4K-2 to a different phonics curriculum through a company called Really Great Reading.

Per our comprehensive district literacy plan, phonics instruction is an identified focus area for the 2021-2022 school year. After extensive review of data and analyzing the types of skill gaps we are seeing in our students, it is apparent that making phonics instruction a top priority is imperative. Really Great Reading is a company that works to bring the science of reading alive in each classroom through explicit lessons and hands-on work for students using letter tiles and other manipulatives. They produce products that can be used within a whole group structure as well as for small groups of students. Manawa Elementary School is looking to use their phonics programs called: Launchpad (4K), Countdown (grade K), Blast (grade 1) and HD Word (grade 2).

In order for Phonics instruction to be effective, it must be systematic and explicit. We believe that following a series of programs from 4 K through second grade will build a strong foundation for our students. Teachers are encouraged to take time over the summer to get familiar with the materials, and we will provide a day of in-house training and grade level planning over the summer as well. Teachers that have used these products with small groups of students have commented on students' growth, and teachers are showing excitement with the idea of being able to make a change to a program they truly believe in.

Please consider this recommendation to change from the Lucy Calkins's Phonics Units of Study to the Phonics programs through Really Great Reading as we work to close achievement gaps and build stronger readers at our elementary school.

School District of Manawa

To: Dr. Melanie Oppor, Curriculum Committee
Fr: Dan Wolfgram
Date: 4/26/2021
Re: Freshman and Sophomore Assessment Recommendation

The purpose of this memo is to recommend the following assessment changes for 9th and 10th grade students to replace the ACT Aspire Periodic Assessment:

- Use of the PreACT Assessment for one year (2021-2022 school year). The cost for the PreACT assessment is $\$ 14.00$ per student. (The previous assessment was $\$ 12.000$ per student and has been accounted for in the 2021-2022 school budget, pending approval.)
- Transition to the recommended Mosaic Platform for the 2022-23 school year and beyond.

Reasons for the Changes:

ACT Aspire Periodic is in the process of being phased out. The ACT Aspire Periodic tests are shortduration assessments, designed to produce snapshots of each learner's achievement at intervals throughout the academic year. They help to identify if a learner's progress is at pace for success with the state mandated test ACT Aspire at the conclusion of the year, and identify corrective strategies for re-teaching. The tests have been in use this year at Little Wolf High School.

ACT recommends replacing the ACT Periodic with the PreACT for use with freshman and sophomores. Much like the ACT Periodic, the test is a multiple-choice assessment that provides students an early measure of college, technical school, and career readiness while serving as a practice opportunity and predictor of performance on the state mandated ACT assessment given to all juniors. Students also receive a personalized view of college and career possibilities based on their answers to the ACT Interest Inventory which can help them start thinking about career paths.

ACT Aspire Periodic will be integrated into the new Mosaic Adaptive Academic Learning platform in Grades 3-8 in Math, Reading, and English, but are not yet available for high school grades. When Mosasic is available in the 2022-2023 school year, this is the most desirable choice because it is an accurate predictor of scoring on the ACT and can be administered multiple times a year.

Manawa, WI 54949

Little Wolf High School Manawa Middle School 515 E. Fourth St Manawa, WI 54949 Phone: (920) 596-2524
Fax: (920) 596-2655

Manawa Elementary
ManawaSchools.org
800 Beech Street
Manawa, WI 54949
Phone: (920) 596-2238
Fax: (920) 596-5339

School District of
 Manawa

- Monthly Disciplinary Literacy visits with teacher small groups.

3. Math Professional Development for Teachers:

- College Preparatory Math (CPM) Teacher Professional Development - Summer 2021.
- CPM Implementation Support Visits, Representatives - CPM matches each adopting school with an Implementation Partner. This person will be our liaison to CPM and will support teachers through implementation. The purpose is to model and observe lessons with teachers as well as be a resource for teacher questions.. Two visits in 2021-2022.
- Principal classroom coaching and evaluation - Ongoing: commitment to be in each math classroom. Frequency = no less than 4 visits per teacher per quarter.

4. Response to Intervention (RtI otherwise known as Wolftime):

- Focused identification of students for remediation based on classroom assessments, state mandated test results, STAR Universal Screener, and PreAct assessment results.
- Focus on what has not been learned.

Manawa, WI 54949

ManawaSchools.org
/ ManawaSchools
/ ManawaSchools

School District of
 Manawa

Studewts Choosing to Excel, Realizing Their Sirvengros

To: Dr. Melanie Oppor, Curriculum Committee
Fr: Dan Wolfgram
Date: 4/26/2021
Re: 2021 ACT Update

The purpose of this memo is to provide a preliminary overview of the LWHS 2021 ACT results.

ACT Composite 5-Year Trends: The following graphs were included in the 2019-2020 ACT Profile Report.

Figure 1.1. Average Composite Scores: 5 Years of Testing*

Content Area Breakdown 5-Year Trends:

Table 1.2. Five Year Trends-Average ACT Scores

	Number of Students Tested		English		Mathematics		Average ACT Scores Reading		Science		Composite	
Year	School	State										
2015-2016	48	62,647	16.9	19.1	17.4	20.1	17.5	20.1	19.6	20.6	18.0	20.1
2016-2017	58	64,475	18.5	19.2	19.2	20.0	18.9	20.1	20.1	20.4	19.3	20.1
2017-2018	55	63,877	18.0	18.8	19.5	19.9	19.8	19.9	20.2	20.2	19.4	19.8
2018-2019	53	62,946	17.5	18.5	18.1	19.5	19.3	20.1	19.0	19.9	18.6	19.6
2019-2020	57	61,465	18.2	18.7	19.5	19.8	19.5	20.0	20.3	20.3	19.4	19.8
2020-2021	47		16.3		18.9		17.9		18.4		18.0	

Little Wolf High School
Manawa Middle School

Manawa Elementary
ManawaSchools.org
800 Beech Street
Manawa, WI 54949
/ ManawaSchools

/ ManawaSchools

School District of Manawa

Studewts Choosing to Excel, Realizing Their Sirengrths

2020 Writing Scores:

*Preliminary data for the average writing score of the 2021 ACT reports a writing score of 6.14. (12 points possible) State scores not yet posted.

Analysis:

- Over a 5-year trend, student performance has plateaued. The Manawa scores are consistently below the state average.
- In 2021, average student scores dropped in all content areas with the largest decline in English and Reading.

The staff and I find this unacceptable and propose the following measures.

Strategies to Improve Learning:

1. Teacher Wednesday Work - This time provides the structure for ongoing discussions around student learning, expected outcomes, and methods for high student achievement across all content areas.

- Formation of a dedicated leadership team of teachers and Mr. Wolfgram to study, and support the staff in maintaining the focus of the Wednesday work (essentially writing an adult learning lesson plan). The team will begin work during the summer of 2021 with Principal Wolfgram and Erin Loritz of CESA \# 6.
- Teachers will collaborate with colleagues in reviewing standards and student data (assessment, course grades, attendance, conduct, etc.) to identify areas of learning strength and areas that need remediation.

Manawa, WI 54949

Little Wolf High School

Manawa Middle School

800 Beech Street
Manawa, WI 54949

ManawaSchools.org

/ ManawaSchools

/ ManawaSchools

School District of Manawa

Strudents Choasing to Excel, Realizing Their Sirengathe

- Teachers will focus on teaching strategies that will incorporate Disciplinary Literacy in all classes.

2. Balanced Approach to Content and Disciplinary Literacy - Disciplinary Literacy Professional Development with Erin Loritz Literacy Center CESA 6.

- Fall 2021 building inservice for all MMS/LWHS teachers.
- Monthly Disciplinary Literacy visits by Ms. Loritz with teacher small groups to learn strategies that the teachers will use in their classes.
- Principal classroom coaching and evaluation - Ongoing: commitment to be in each classroom. Frequency = Each classroom will be visited a minimum of 2 times per month.

3. Math Professional Development for Teachers:

- College Preparatory Math (CPM) Teacher Professional Development - Summer 2021.
- CPM Implementation Support Visits, Representatives - CPM matches each adopting school with an Implementation Partner. This person will be our liaison to CPM and will support teachers through implementation. The purpose is to model and observe lessons with teachers as well as be a resource for teacher questions. The Implementation Partner will conduct two math classroom visits in 2021-2022.
- Principal classroom coaching and evaluation - Ongoing: commitment to be in each math classroom. Frequency = Each math classroom will be visited a minimum of 2 times per month.

4. Response to Intervention (RtI otherwise known as Wolftime):

- Focused identification of students for remediation based on classroom assessments, state mandated test results, STAR Universal Screener, and PreAct assessment results.
- Focus on what has not been learned.

Little Wolf High School
Manawa Middle School

Manawa Elementary

800 Beech Street
Manawa, WI 54949

ManawaSchools.org
/ ManawaSchools
/ ManawaSchools

